Iron isotopes on Mars linked to the formation of the terrestrial planets

P.A. Sossi¹, O. Nebel¹, M. Anand^{2,3}, F. Poitrasson⁴

¹ Research School of Earth Sciences, Australian National University, Canberra 0200, ACT, Australia

² Dept. of Physical Sciences, Open University, Milton Keynes, MK76AA, UK

³ Dept. of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK

⁴ GET-CNRS, 14, av. E. Belin, 31400, Toulouse, France

Iron isotopes (δ^{57} Fe) fractionate by Fe exchange in different valence states and bear witness to the redox history of early solar system bodies. Although δ^{57} Fe differences between terrestrial and Martian (SNC) basalts have been proposed [1], recent analytical advances and a refined δ^{57} Fe value for Earth's mantle [2] call for a re-assessment of this difference. We report Fe isotope analyses of 17 Martian whole rocks and 5 mineral separates obtained in Canberra and Toulouse.

All Martian meteorites correlate with indices of magmatic differentiation. Nakhlites and evolved shergottites have δ^{57} Fe \approx 0.05±0.03‰, while the MgO-rich rocks are lighter (δ^{57} Fe \approx -0.01±0.02‰). Lighter δ^{57} Fe of pyroxenes than whole-rock nakhlites causes a co-variation of δ^{57} Fe with fO_2 , where both increase in the melt as in terrestrial magmas.

If SNCs are representative of Martian magmatism, they are distinctly lighter than MORB. Extrapolation of the δ^{57} Fe SNC trend to a putative Martian mantle yields a value lighter than its terrestrial counterpart, but close to chondrites. If the Earth and Mars accreted from similar material, this disparity arose post-accretion (given the constancy of δ^{57} Fe in chondrites). As MORBs are more oxidised (\approx FMQ) than Martian shergottites (FMQ-2.5), a process that increased the fO_2 and δ^{57} Fe of the BSE is required.

Possible mechanisms include evaporation of light isotopes during a Moon-forming giant impact [1], addition of an oxidised ⁵⁷Fe-enriched impactor, or disproportionation and extraction of Fe^{0} in equilibrium with perovskite with large $\Delta^{57}Fe_{mantle-core}$ [3,4] but not on the smaller body, Mars [5].

[1] Poitrasson et al., 2004, EPSL, 223, 253-266 [2] Craddock and Dauphas, 2013, EPSL, 365, 63-76 [3] Polyakov, 2009, Science, 323, 912-914 [4] Williams et al., 2012, EPSL 321-322, 54-63 [5] Poitrasson et al., 2009, EPSL, 278, 376-385